Genetic control of temperature preference in the nematode Caenorhabditis elegans.

نویسندگان

  • Akiko Mohri
  • Eiji Kodama
  • Koutarou D Kimura
  • Mizuho Koike
  • Takafumi Mizuno
  • Ikue Mori
چکیده

Animals modify behavioral outputs in response to environmental changes. C. elegans exhibits thermotaxis, where well-fed animals show attraction to their cultivation temperature on a thermal gradient without food. We show here that feeding-state-dependent modulation of thermotaxis is a powerful behavioral paradigm for elucidating the mechanism underlying neural plasticity, learning, and memory in higher animals. Starved experience alone could induce aversive response to cultivation temperature. Changing both cultivation temperature and feeding state simultaneously evoked transient attraction to or aversion to the previous cultivation temperature: recultivation of starved animals with food immediately induced attraction to the temperature associated with starvation, although the animals eventually exhibited thermotaxis to the new temperature associated with food. These results suggest that the change in feeding state quickly stimulates the switch between attraction and aversion for the temperature in memory and that the acquisition of new temperature memory establishes more slowly. We isolated aho (abnormal hunger orientation) mutants that are defective in starvation-induced cultivation-temperature avoidance. Some aho mutants responded normally to changes in feeding state with respect to locomotory activity, implying that the primary thermosensation followed by temperature memory formation remains normal and the modulatory aspect of thermotaxis is specifically impaired in these mutants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multigenic Natural Variation Underlies Caenorhabditis elegans Olfactory Preference for the Bacterial Pathogen Serratia marcescens

The nematode Caenorhabditis elegans can use olfaction to discriminate among different kinds of bacteria, its major food source. We asked how natural genetic variation contributes to choice behavior, focusing on differences in olfactory preference behavior between two wild-type C. elegans strains. The laboratory strain N2 strongly prefers the odor of Serratia marcescens, a soil bacterium that is...

متن کامل

Temperature-dependent behaviours are genetically variable in the nematode Caenorhabditis briggsae.

Temperature-dependent behaviours in Caenorhabditis elegans, such as thermotaxis and isothermal tracking, are complex behavioural responses that integrate sensation, foraging and learning, and have driven investigations to discover many essential genetic and neural pathways. The ease of manipulation of the Caenorhabditis model system also has encouraged its application to comparative analyses of...

متن کامل

The Characterization of a Novel Cell Migration Gene with a Maternal-effect and Temperature Sensitivity in Caenorhabditis elegans

The nematode Caenorhabditis elegans is a unique resource for the study of axon guidance and cell migration. Genetic data collected from C. elegans research has played an integral role in advancing our knowledge of genetic pathways that control axon and cell guidance, such as the UNC-6/netrin pathway, within a developing organism. However, there are still many unresolved questions concerning the...

متن کامل

Oxygen-induced social behaviours in Pristionchus pacificus have a distinct evolutionary history and genetic regulation from Caenorhabditis elegans.

Wild isolates of the nematode Caenorhabditis elegans perform social behaviours, namely clumping and bordering, to avoid hyperoxia under laboratory conditions. In contrast, the laboratory reference strain N2 has acquired a solitary behaviour in the laboratory, related to a gain-of-function variant in the neuropeptide Y-like receptor NPR-1. Here, we study the evolution and natural variation of cl...

متن کامل

Determination of the effects of food preservatives benzoic acid and sodium nitrate on lifespan, fertility and physical growth in Caenorhabditis elegans

Presently, the use of protective food additives such as benzoic acid and sodium nitrate is quite common. However, it was found that these additives, which initially appeared to be harmless, led to the emergence of a number of health problems. Cancer and diseases and deaths with no apparent causes are among the leading concerns. Therefore, the studies which can reveal the genotoxic potential of ...

متن کامل

Transcription of class III genes in cell-free extracts from the nematode Caenorhabditis elegans.

Using the nematode Caenorhabditis elegans as a model organism, we have prepared cell-free extracts which accurately transcribe cloned homologous 5S RNA genes in vitro. These extracts also transcribe cloned tRNA genes, and actively process the resulting products. Unlike tRNA genes, transcription of 5S DNA shows some species specificity: C. elegans extracts do not transcribe Xenopus 5S RNA genes,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 169 3  شماره 

صفحات  -

تاریخ انتشار 2005